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1. Introduction.

If the characteristic function of an n-dimensional random vector x

has the form e ilt'(t'Et) , where p:nxl, E:nxn, and E > 0, we say

that x is distributed according to an elliptically contoured distribu-

tion with parameters p, Z and 0, and we write x % EC n (,, (cf.

Cambanis, Huang, and Simons (1981)). In particular, when p = 0 and

E - I (the identity matrix), EC n(0,1 n,) is called a spherical distri-

bution (cf. Kelker (1970)).

The class of the elliptically contoured distributions contains such

distributions as the multivariate normal distribution, the multivariate

t-distribution, the multivariate Cauchy distribution, the multivariate

Laplace distribution and the multivariate uniform distribution on the

sphere in n or in the sphere in Xn.

The theory of elliptically contoured distributions has been discussed

by Schoenberg (1938), Lord (1954), Kelker (1970), Das Gupta et al. (1972),
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Devlin, Gnanadesikan and Kettenring (1976), Kariya and Eaton (1977), Muirhead

(1980) and Cambanis, Huang, and Simons (1981). The following basic properties

obtained by the above authors are needed in this paper.
(n)

(1) Let u denote a random vector which is uniformly distributed

on the unit sphere in eR and 1n(11t 2 ) denote its characteristic func-

tion. If I, n > 1, is the class of all functions 0: [0,-) - IR such

that O(OtI12 ) is a characteristic function, then 0 $ if and only if
n

(1.1) ft) f (r2t)dF(r) , t > 0,

for some distribution function F on [0,0) (cf. Schoenberg (1938)).

(2) x ' ECn( p,Z,O) with rank rk(E) - k if and only if

(1.2) x d p + RA'u(k)

where R > 0 is independent of u ( k) , E - A'A is a factorization of E

(i.e., A is a k x n matrix and rk(A) k) and the distribution func-

tion F(x) of R is related to 4 as in (1.1) with k substituted for
d

n. Here, x d y denotes that the random vectors x and y are identi-

cally distributed (cf. Cambanis, Huang, and Simons (1981)). In the next

section we discuss the operation in detail.

(3) If x PV Nn(ii,Z) , then x 6 ECn(iE,) with 0(t) a exp(-t/2)

and R2 VX 2 , where 2 denotes the chi-squared distribution with n

degrees of freedom.

If A is an n x n symmetric matrix, what is the distribution of

x'Ax ? Kelker (1970) obtained the distribution of x'Ax/x'x n the case
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of x 1, EC (0,1, ) and the distribution of x'Ax under the condition

that x has finite fourth moments and x has a density. Kariya and

Eaton (1977) gave the distributions of a'x/Ujxll and x'AxIIxl2 , where

1x112 . x'x. There is a rich bibliography on the distribution of quad-

ratic forms in normal population. Recently, Anderson and Styan (1980)

reviewed various extensions of Cochran's Theorem in a bibliographic and

historical setting. Our purpose in this paper is to extend Cochran's

Theorem to elliptically contoured distributions in various aspects. The

main results are in Sections 4 and 5. In Section 3 we list some basic

properties of Dirichlet distributions that are needed later. Some appli-

cations are given in Section 6.

Throughout the paper N (i,E) denotes the n-dimensional normal distri-

2
bution with mean p and covariance matrix £ , Xk denotes the chi-squared

distribution with k degrees of freedom, F(k,9,) denotes the F-distribution

with k and Z degrees of freedom, t denotes the t-distribution withn

n degrees of freedom, I denotes the n x n identity matrix, e denotes-n Zn

the n x 1 vector with elements 1, rk(A) denotes the rank of the matrix

A, and A7 denotes a generalized inverse.

2. The Operation

If random vectors x and y have the same distribution, we denote

d
that fact by x 2 y.

(1) Assume x, y, z and w are random vectors, x and z are independ-

ent, y and w are independent, and x d y. Then z - w if and only if

d(2.1) x+z =y+~w.

3
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In particular, if z is a nonrandom vector, then x - y implies x + z

d y+Z.

(2) Assume that x g y and f(') , J - l,...,m, are Borel func-

tions, then

(2.2) f 2 ( d 2

For instance, we have

(2.3) x'Ad y'Ay, x'x y,y

- y

(2.4) d i

(3) The following fact is Important in this paper.

Lemma 1. Assume that x and y are n x 1 random vectors, z is a

random variable and is Independent of x and y, respectively. If

(2.5) P(z > 0) - 1

then x d y if and only if zx 9 zy.

Proof. Firstly, we prove that Lemma 1 holds if

(2.6) P(xi>O) P(y , i l,...,n .
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By using (2.2) we have

lnzx ilz, n xl (
d' 1

zx zy inn + dC +

nn J%

is enough to prove the lemma In the case of x and y being scalar random

variables because

d

Scdla' x a y Van y1Rn.o azxbitzy an vcrn

if we have proved the lema in the above case. Let

if xO <J0O if x><O

verify that

x y t .+, -y-, a p(E 0 ' p(0) -y an + d . y

If v prove that he g + y+ ad zxzy.xy- then

tei assertion follovs from
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zx jdzy 0 (zx)+ d (zy)+ and (zx)- (zy)-

+ d + ad -d + +d + ad x
xx - y an x-zy 0 X My an - y 0 xiny.

Nov we prove that zxz -y 0X. Assume a then

p(x>O) - p(x >0) * p(zx+>0) - p(zy+>0) - p(y+>0) - p(y>O)

and

p(x>O)E(e z x>0) -E(e )tz + p(x<0) -E(e itzy + - _so

- E(eitZyiy>O) p(y>O).

From the first part of the proof we have E(eitX x>O) - E(eityfy >0)

+d +
i.e., x - y . The '4' part follows by the same technique. Similarly

we have zx - zy x- y-. Q.E.D.

3. The Dirichlet Distribution.

If y = (y,...,ym)' is a random vector with E1 Yi 1 and

(YI''".. "Ym-i )  has the density with a i > 0, 1 1,..,m,

([.i M n-i I1  i

Tt- (a)

if ti _o i-,.,-, ti < I,

-0, otherwise.

We say that y is distributed according to a Dirichlet distribution and
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denote it as (Y("" m-;a " D(ci ""%-a;c) When m-2 D2 (dl;d2)

reduces to the Beta distribution, B(OL,02 .

It is a well-known fact that if x ' Nn(OIn) and is partitioned

into m parts x(1),...,(m) with cl,...,am components of x, respec-

tively, i.e.,

(3.2) x
!(M),

CL a a
x xx f 1  -i I

then the joint density of I2  is. D 112

In particular, if a = ... =  l aa n-k, m k+l, then
paricuk ' k+1

2 2Xl x k 1 1 -
has Dk+1 ,... a as its density. it can be vern-

r1 Ix ki
fied that the density of ,..., is

n___ k 2

( l X 2 k<1
and the density of -jg**'iF' is

(3.4) g,(xl,..., ) -  f- 2 , X i

r(-h)Wk/2  J 1

If x, R C (Ol), then (cf. (1.2))
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(3.5) x d (n)

where R and u(n) are independent. From (2.3)

(3.6) 11x112 - x'x d R2 u(n) U(n) _R or Jjxjj It

If p(x=O) - 0 (or p(R-O)-O), we have (cf. Cambanis, Huang, and Simons,

(1981), Lama 1)

(3.7) x/1lxll d U(,)

and it is independent of jx I" 1 R. Note that (3.7) holds for all of the

class of spherical distributions with p(x-O)- 0. Thus we can assume

x "'N (0,1 ) to obtain the distribution of ratios. We will use the property
many ties. Denote u(n) = (ul, ... ,un) We lmediately obtain that

(i) the density of u ...,Uk I < 11 <i <.<i <n is
1  k 1 2kSn

(cf. (3.4));

(ii) the density of Ju, I,...,lui I, 1< i < i2< .<k< n, is (3.3);1 " k -- -- k

(iii) if U(n) is partitioned into m parts as the same as (3.2), then

the density of (Ifu()JP... ". (1 1)h is D2 1'

m r
(iv) Let ., - E[1 ui ], then g -0 if some ri

are odd. If all of r1,...,rm are even, )r r can be obtained as

moments of the Dirichlet distribution (cf. Johnson and Kota (1972)), i.e.

m

(3.8) Prl r - 1
[E ri]

where x k x(x+l) (x+k-l). in particular, id(n). 0, Runvn -
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There is a close relationship between the chi-squared distribution and

Dirichlet distribution from the above discussion. The following are further

results.

Lemma 2. Assume that (Zl'"m.() D a 1'''"2 ) with
m+(2m'. l

a > 0, i l,...,m+l, and EM+l a - n and yo'YS...,y m+ l  are distri-

buted as chi-squared distributions with degrees of freedom n,al,..... M+I ,

respectively; then

m

TI (t )

an)r (-r>a+ it,)>
-1

r(i+ i(t1+...+t )) J-1 r(4
2

where *(.) denotes the characteristic function and i - --.

Proof. Let x 1, Nn(0,In) and x( 1 ),...X(,~ 1 ) have the similar sense

as (3.2). Then IIX(j)112 d i - l...,m-l, and IJx112 d Y0 " We haverlxI ,,'1M121 x,.2,
d . [xjj2 ,

k 11 (.>ll 2 11x(m>l2/ll112J1

and

z n11x(l)11 2- t] .I 2 /li 2

%d till12 §' +1

J3'j2 1tJIX('II /Ilc I



The first part of (3.9) follows from the fact that jixil and a4I xj are

independent and ((Xc1 )II2 /Izx 2 ,...,IlxzmII 2 /flxI) (Zl,...,zM). Note

(cf. Press (1969))

itt n) 2it r A + it)
E(e n 2

PC1I

2

the second part of of (3.9) follows. Q.E.D.

k n-k 2 2In particular, if z - B(k , -- ), yo 1, and Yl I X2, then

9.ny(t) r(b)r(+ it) B k n-k

(3.10) z n 1 M 2 2

n znYO r (k r (. + it) B(-, 2.

where B(a,b) is Beta function.

1 11)

Lemma 3. Assume that x 1 Nn(0,In), (zl ... ,zn- 1 ) " D

z Z 1 -E- zi'l YI''' .. 'Yn are i i d., Y 1 , 1 1f ,..n and

Al,...,A are n x n symmetric matrices. Let gi(tl,. ,tn - ,..,--M,
M nl- n- - i..*

be linear functions of t.,...,tn, then

. . . • .n gl(YI,-- .. ,Yn)'

(3.11) d

Proof. We firstly prove the implication towards the left. If the right

side of (3.11) holds then
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2 2
xl XWI n

x' x ,yn j  (x,...,X)J oIxI2'*** IX

g.""* 1'1 J "( Y ..' 2 1. " 21

and from Lma 1

( 2 2
x1 x

!'A i~r Ii 2l X12 gM(zl," .,1z)

x~gm -k() I  .,n)111/1 J I -11

Here we use the fact again that IIxII2 and x/lxI are independent. The proof

in the other direction is similar. Q.E.D.

By Lema 3, we can change the theory of distributions of quadratic forms

from chi-square distributions to Dirichlet distributions.

Corollary 1. Assume that x ' u Nn(O,I) and A is an n x n symmetric

matrix, then x'Ax/jjxjF I B k if and only if A2 - A and rk(A) - k.

Proof. By Cochran's Theorem, A2 - A and rk(A) - k if and only if

or xIiky hxjjj _ Ekfz ka
x'Ax Xk or x'Ax E y. hence f an ony

from Lemma 3 with m 1 and gl(tl,...,tn) n t 1 + .+tk. Q.E.D.
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Corollary 2. Assume that x 1- N (0,I ), A and B are n x n symetric
- n~

matrices, then xl,r... , has the Dirichiet distribution D (1 1 1

n z M 1, then

(3.12) , k4M<nf-~~~~j i'Az, k+1 vj

if and only if A - 0, where A1  and v are nonzero real numbers.

Proof. By Craig's Theorem (cf. Anderson and Styan (1980)) AB - 0 if

and only if x'Ax and x'Bx are independent or if and only if

k MiYi, jyj .

where X11... Xk and v1,...,Vm are the nonzero eigenvalues of A and B,

respectively. Thus the corollary follows by Lamma 3. Q.E.D.

Corollary 3. Let x, A and B be defined as in Corollary 2, then

(x'Ahx N.-k D-. ) with k > 0, m > 0, k4 i n, if

2 ( 2 2
and only if A B- 0, A2 - A, B2 B, rk(A) - k and rk(B) - m.

k £k~u
Proof. The corollary follows from Corollary 2 and ( 1 zi, Ek+l z

D&9 k mn-k-u Q.E.D.

4. Distributions of Quadratic Forms and Cochran's Theorem.

In this section we want to extend distributions of quadratic forms and

Cochran's Theorem to the case of elliptically contoured distributions with

mean zero. Firstly, we need to generalize the Dirichlet distribution and

the Beta distribution.

12



If a random vector (zl , . . . , z ) ' satisfies (z1 ,....za) R 2 (uu...,ua),

where R'0 F(x), R is independent of (ul, .... u_ ) , E In - 1, and

D" -D (a"'". -1 ;). then we write (zi,"".-z)

.l;O;0) and (Zl..., z) 1 Gm(OL,...,ca acm; ), where 0

is related to F(x) as in (1.1) with n - 2(a+ *.-.+ a).
1 M

It is easy to show that the density of G(al,..., ;a ;0) is'm-1 in

(41 .r 2) M1 a 1%- 4D-2 I _>0
(4.1) rT) rl i~-l r-(n2) .2 z a dF(r) if z i  0

llr(Q) 1 -
1

Further, if R has a density f(r), then the joint density of u

and R is (cf. (3.1))

r( M r i O - n-1)cz%-1

r- i-i

Consider the following transformation:

2
z i  r ui, i ,

zm r2 1 1 u]

then

u z i ... m-

r zi1/2

Thus the Jacobian of the transformation is

13



r

mod. r-2 u 1 z z

sod~~ )%-

-(21 (a) z-

Now the Joint density of z 1 , . , . , Zm is

(. (2 m a l -(n-1)/2 {{ J}(4.2) H z z i]z
2 T r£(a

If x ' EC n( ,q 5 then R has a density f(r) if and only if x
has a density which must have the form

[ - g((x-.), -(-5

for a suitable function g(.). Moreover there exists a relationship

between f(.) and g('), i.e.,

f(r) - r(n/2 r g(r 2

(cf. Cambanis, Huang and Siaons (1981)). Substituting the above formula

into (4.2), the density of Zl,... . am becomes

14 i



(4.3) iT t. t g z

1

In Section 6 we viii give some examples of G a(all,..., az 1;a; ). Anderson

and Pang (1982) give some further applications of GM(al,..., 1  Ml;aM;).

Theorem 1. Suppose that x u ECn(0,I ,), p(x-0) - 0 and A is an

nxn syimetric matrix, then x' Ax u G2(h; --n-k if and only if A2  A

and rk(A) - k.

Proof. If A 2 A and rk(A) - k, then there exists an orthogonal

matrix r such that r'Ar - J'" j.1 Let y - rx; it can be verified that(1 0

--- ~)- -

k 2

k 2 E2

that~~~~~~~~~~ I ly 11201, ) ~ ndxA~~ 1 Yweey YI"Y)'Tu

(4.4) XA- yi Iyll2  11

As is known, Ily1F and 1.1 y1AijyIF are independent and the distribution of

E-k y2 /HYj does not depend on what the distribution of j is In the class

of ECn(O,, ); therefore we can assume y 1%, Nn (0,1 n). It implies that

Ek y |Y[2 1 B(, ). As 11[I1 i R I F(x), we have completed the proof

of the "if" part.

If x'Ax u G k n-k write
G2 (f~; -2-;', rt

~X 'Ax2

where R 1%, F(x), z '' B(, R_-k) and they are independent. By Lema I we have

15



'C 'Ax
il~i

From Corollary 1 of Lsma 3 the assertion follows. Q.E.D.

Corollary. Assume that x ' ECn(O,E,*) with Z > 0 and p(x'O) 0,

and A is an nxn symmetric matrix; then x'Ax I' G (!;- ; 0) if andI -_ 2 2' 2w~*
only if AZA - A and rk(A) - k.

Proof. As E > 0, there exists El > 0 such that £ £ - Z. Let

y - Z , then y - ECM(OI,4). By Theorem I

XfAx - Yt(E )Y ~ ,G k n-k 0)

if and only if (£ A1) 2 = ZkAl, and rk(E.A21) - k, i.e. AZA- A and

rk(A) = k.. Q.E.D.

It is well-known that A2 - A if and only if rk(A) + rk(I-A) - n.

Hence AEA - A if and only if rk(A) + rk(E-A) - n. The corollary shows

us that Z must be a generalized inverse of A. Kelker (1970) gives a

result similar to the corollary, but he assumes finite fourth moments for

the components of x. I

If x 1, n(0,In) ,  A A, A2  A and rk(A) k, then x'Ax ~~ X 2 by

Cochran's Theorem, i.e. G2(L; ak; Xk 2 if (t) exp(-t/2). The
2 2' 2' ) Xk i ()-ep-/ h

inverse proposition also holds.

k n-k 2
Theorem 2. The distribution G2 (k , -; 0) is Xk if and only if

*(t) - xp(-t/2).

16



Proof. We only prove the "only if" part. If z G2( k ;s

2 k n-k2
Xk, by the definition of G2(T; 2; 0). We have z R2 .w, where

R 1 F(x), w v B( ) and R2 is independent of w. Let Y X 2

2
and yO xn; from (3.10) and the supposition we find

(t) (t) - f R(t) . w 
n n (1 )

9n 9 n £n n wn R 9nYo (t )

2 2
which implies R y,,, i.e. f(t) - exp(-t/2). Q.E.D.

By a method similar to those used in proving Theorem I and Theorem 2,

we obtain the following theorems and corollaries.

Theorem 3. Suppose that x I,- ECn (0,1 ,), p(x-) - 0, A and B are
k t. n-k-t

n x n symmetric matrices, then (x'Ax, x'Bx) k 3(,- T ; 2 ) if and

2 2
only if AB - 0, AF - A, B - B, rk(A) - k and rk(B)i- .

Corollary 1. Suppose that x 'lu EC (O,E, ) with E > 0, p(x-O) 0,

A and B are n x n symmetric matrices, then (x'Ax, x'Bx) G G3(., R- --;
3 322# 2

if and only if ALA - A, BEB - B, rk(A) - k, rk(B) - L and AEB -0.

Corollary 2. Assume that x 1%, ECn(0,Inf), p(x=O) - 0, A and B are

projection matrices with rk(A) - k and rk(B) - k satisfying AB - 0, then

x' F(k,)

kx'Bx

Proof. As AB - 0, there exists an orthogonal matrix r such that

r'Ar - diag(l,...,l,0,...,0) and r'Br - dia(0,...,0,1,...,l,0,.-.,O).

k k t

17



k 2 _k+Z

Lt r , then v C(0,In x'AX - l y i and x'x "E k+l)Yi

thus

k k 2k2.2 2Y/ 2' 1 2 2 i

x'Ax I _ Ey/11 112  ~ zi/1!zIIA~~.~ 1R A. Ii , d 1 1 X. 1
k x'x k k+t k k+J k k+ k k+1 F(k,k)

2 22 1+ 2

k-I- k-1 k+l k+l

where z '- N (O,1). Q.E.D.

Kelker (1970) treated the distribution of Z kx2 Zk+X 2 by a different

method.

kIn-k-1,Theorem 4. The joint distribution G3(k , T; -; is the product

2 2of the distributions of Xk and , if and only if 4(t) = exp(-t/2).

Theorem 5. Suppose that x 1%, EC (OIn) , p(x-0) 0 0, A and B are

11n x n symmetric matrices and (zl,..., D . . ) is independent

of R. Then

k

k+l J J

with real numbers Ai and Jv if and only ifAB 0 and Xi's are the non-

zero elgenvalues of A, V' are the nonzero ei4envalues of B.

The above theoreas can be generalized to the case of several quadratic

forms.

18



5. Tripotent Matrices.

A square matrix A is said to be tripotent whenever A3 - A. Anderson

and Styan (1980) extended Cochran's Theorem to tripotent matrices. If

3A - A, the eigenvalues of A are 1, -1 and 0. Let p and q denote

the number of eigenvalues equal to 1 and -1, respectively. If

x v N n(0,1n ) ,~ then xAx yl-y 2 , where y1  and y2 are Independent,

Yl 1 . and Y2. q " The distribution of y1 -Y2  has been given by Press

(1969) and Robinson (1965) and we denote it by H(P2, -q). Similarly, if

(vl,v 2) D D( , ; -q ) we dete the distribution of z - v1-v2  by

21'2' 2

Lena 4. Assume that A "' Nn(0,1 n ) and A is an n x n symmetric matrix.

Then X'Ax q H(2 -I- -_- 1 if and only if A3 - A with p l's and
29'2' 2 -

q -l's as its nonzero eigenvalues.

Proof. Apply Lemma 3 with gl(tl,...,tn) -p - tj and rn-i

which completes the proof.

Now we generalize the distribution H(2 2q- -2-q) to the case of ellip-
2' 2' 2

tically contoured distributions. If z d v _v2 % H(, n- ), R - F(x)

and is independent of z, we denote the distribution of R2z by

H &. n ; ) where * is related to F(x) as in (1.1). By the same
2' 2' 2'.si

technique used in the proof of Theorem 1 and Lemma 4 we obtain the following

theorem.

Theorem 6. Suppose that x la ECn(oIn,O), p(x0) 0 nd A isan

u x usymmetric matrix, then x'A. na H( 2:; if and only if2' 29 2

A3 - A with p l's and q -l's as its elgenvalues.

19



Corollary. Suppose that x 'V EC (O,Z,*) vith Z > 0, p(x-O) - 0,

and A is an n 'x n symmetric matrix, then x'Ax % H(P2 1- --
- --. 2' 2' 2'

if and only if

(5.1) rk(A) = rk(A-AEA) + rk(A+AEA)

and AE has p l's and q -I's as its elgenvalues.

Proof. As Z > 0, there exists E > 0 such that Z, - Z. Let

x -Z y, then y " ECn(O,I ,0b) and x'Ax - y'(zhAZ)y. From Theorem 6

x'Ax -6Hfl &. n-q ~) if and only if2 ' 2' 2

(I) Z AZ has p l's and q -I's as its eigenvalues, or equivalently

AZ has p l's and q -l's as its eigenvalues.

(ii) (Z ZAZ )3 . U11AZ). Anderson and Styan (1980) point out that

3 ~2 2
B B if and only if rk(B) . rk(B+B ) + rk(B-B ) for any square matrix

B. Thus (AZ ) 3  . AZ if and only if

rk(A) a rk(ZEAZ'%) - rk(E'AZ'1+TAAE1) + rk( AZ -Z'EZAZ )

- rk(A+AZA) + rk(A-AZA) . Q.E.D.

6. Applications.

In this section some applications are given. In the first part we

consider the theory on linear regression with the error being distributed

according to an elliptically contoured distribution. We will find the

distribution of the sample variance, the distribution of the ratio of the

sample mean to the sample standard deviation in the second part. In addition
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we will give the distributions of quadratic forms for the multivariate

t-distribution, the multivariate uniform distribution, etc.

6.1. Linear Regression Analysis. We consider the following model:

! Xnxl = X nxp BP× + e n xl '  r k (X ) = p < n

(6.1) J e - 0:O,,, ;t) Z> 0

There exists a pXp matrix A such that A'A Z . and

(6.2) e RA'u

Hence

(6.3) y Xs + RA'u ( n)

i.e., Y ECn (8 ,E,).

Minimizing e'e - (y-X$)'(y-XB) with respect to 8 gives the least

squares estimator

(6.4) 8 - (X'X)Xy

In order to find the distribution of $ we need the following iema.

La 5. Assume y \vEC(P,In,) and A is n x p matrix with

rk(A) - p < n; then X- A'y " ECp(A'V,A'A,b), where c 0 corres-

ponds to R and
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(6.5) R R. b

2 1 1
where b > 0, b ' B( p, (n-p)), and b is independent of R.

Proof. Consider the singular value decomposition of A, i.e., there

exist orthogonal matrices rpxp and A nxn such that

A' r O)A'

where Dr - diag(X1 '....X) and are the roots of JA'A-AXij 0.

From the assumption

y V + Ru( n )

thus

x d A'P + Ru(n)

AL11 +RrD OA,(n)

gA'u. + Rr(D~ 0)u(n)

because u(n) d u(n). Let z N %(0,1n) and

where u( 1 ) and z(,) are p x 1 vectors. Based on the relationship between

u(n) and zw haveI

x A' + RrD ;k u (1)IA/i'zI+ RrD)XIz( 1 ) zi

dA'j + (Rb) (rD )(p)
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Sl e A'A (rS,(fDa).. the Lam,, follows. Q.E.D.

By Lma 5 and (6.4) we have

(6.6) d (xx)-x,[X)+ u(n)

8~ ~ - (n)10X(8+Au

8 + R(X'X)-X'A'u n )

A x-1x xxx-

or '0 ECP (8,(X'X) X'x(x'X) )

where 0 is defined by Lemfa 5. In particular, if - - 1p then

2 -1

8 ' ECp (Sa2 (X'X) -M

Denote

(6.7) s- (y-X$)'(y-X8)

Sy' [I-X(X'X) X']y

e'II-X(X'X) 1X'Je

,2  O2G2( -

If e %EC (Pa In,) p(eO0) - 0 and rkX - p, then s ( ; )
n 2% 2 2'

by Theorem 1. We summarize the above results in the following theorem.

Theorem 7. Assume e ' EC (0,21 n,), p(e-0) 0 and rkX -p < n,

then

and

1,a 2 G ; * )
2% 2 2
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Now we consider the linear hypothesis

(6.8) H: H8 - c

where

H: q Xp, rk(H) - q < p

Under the condition of H8 - c minimizing e'e with respect to 8

gives the least squares estimator

(6.9) 8H  - (X'X)-iH'(H(X'X ) - I -c)

where 8 is given by (6.4), and the corresponding (y-XSH )'(y- H)

becomes

(6.10) s= (y-4+K8-XH) 'L(y-X+8-X H )

- s + (Ho-c)'(H(X'X) ')-(Ha-c)

where s is defined by (6.7).

The statistics testing the hypothesis (6.8) is

(6.11) s=-- .
S

When the hypothesis is true we have c -18 and

()(-),-X , (n)
(6.12) (H$-c) - H(A-) d I(X X)gA H(X'X)- X'e•

Thus

(6.13) al-s - x')-H(x'x)-']e

- .'De (say) .
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It is easy to see that - P., rk% " q, and DH(I-X(X'X)-X') - 0. From

(6.13) and (6.7) X can be expressed as

'el
(6.14) e [I-X(X'X) 1Xe

and

n:p_ F(q,n-p).
q

(cf. Corollary 2 of Theorem 3).

Theorem 8. Assume e I EC n(0,02 I ) , p(e-0) 0 and rkx =p, when

the hypothesis (6.8) is true the distribution of (n-p)A/q is F(q,n-q).

6.2. Some examples.

Example 1. If x '% o EC (0,I n) and p(x-0)- 0, let

n 2 -

(6.15) x n xi and s = (x-x)

We can express s2 . x'(I -M)x with M e _E'. It is easy to check that

2 2 ., nl
(I-M) = I-M and rk(I-M) = n-1. By Theorems 1 and 2 a G2(-- ; 4 )

222
and s 1l if and only if *(t) - exp(-t/2), i.e. x N ( . n ).

n n--n

Further, if x 'u EC n(0,,4)) with Z > 0 and p(x-0) = 0, and x and

are defined by (6.15), by the corollary of Theorem 1 a 2 G2 n-1 1

if and only if Z is a generalized inverse of (I-M). Let r be an orthogonal

matrix with the first row (1/I,...,lln), then

~0 0

2 5 n-1
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or 0: 0
I-H r ) .

It can be verified that any generalized inverse (I-M) of (I-M) can be

written as

(I-M) =4;Zb
"" ",E21 In-1.-

where c11, c12  and c21 are arbitrary. Hence Z must have the above

structure, but here E > 0, c i} have to satisfy the conditions: c -
-ij .21 '-12

and cll > c12c2.

-- 2
Example 2. Assume x "- EC n(0,In' 0, p(x=0) 0, and x and s are

defined by (6.15), we want to point out that

(6.16) t t
t(n-1)

Let r be the same as Example l and -x, then y % ECn(OInl) and
Yl-xs n2 n-'n

- ? £2 y. I N (0,1n), then

A - . y/l 1 11 d .z1/_ z_ , .
AZ 1 1~ tii ( n- ( 1 )

bec,,,,e %.IzI..Y/zI g (, 1IIllIll...,,/llllI), hence, their ,orel. functons

have the same distribution.
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E ple 3. Multivariate t-distribution. If x N (P,E), s % Y

s2 2
(i.e., a 2%2) and x is independent of a, the distribution of

y V x/ is called the multivariate t-distribution. (cf. Johnson and

Kotz (1972)). When U - 0, E - I n the density of y is

r( ! (n+v))
(6.17) 2 + V-1 y2 1-( n + v ,

(61)p ( " r ()r( 2v1

It can be found that the densitry of Ilyll is

12 r( (n+V)) n- -1 U >2(n+)

(6.18) P11 (u) r< n)( v)vn u(- (1, _ o

Obviously the multivariate t-distribution is an elliptically contoured dis-

tribution. If x 'I N (p,E), from (1.2)

x g + RAu(n)

(n)

where R% Xn is indepenident of u~n  and A'A- . Thus if 1- 0

(6.19) y 9 (V A,u(n) ,

which is the stochastic representation of y. The density (6.18) of r7 R/s
1 R 2 V R2

can be motivated by the F-distribution because n ( s-) - -2 F(nv).
n sn

If A is an n x n symmetric matrix,

x'Ax
y'Ay a V 

.
2

As x'Ax is independent of a2 and x'Ax %, x 2 if and only if AEA - A and

rk(A) - k, hence I y'Ay ' F(k,v) if and only if AEA - A and rk(A) - k.
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Further if E - n, A and B are projection matrices with rk(A) - k,

rk(B) - £, then -1 Q'Ay, y'By) ts distributed according to multivariate

inverted Dirichlet distribution (cf. p. 238, Johnson and Kotz (1972)).

When v - 1 the multivariate t-distribution reduces to multivariate

Cauchy distribution.

Example 4. Uniform distribution in the unit sphere in mn. If

x is distributed according to the uniform distribution in the unit sphere

in N, its density is

2 n

-/ if ,<1I

(6.20) p X iT

0 otherwise

It can be shown that the density of 11x4I is

pilxll(u) - nu 1  for 0 < 1,

and the density of 11x 12 is

1 hn-1p (u)- inu for <u <1.

k n-kIn this case the density of G 2( ; ."--; *) is (cf. (4.1))

28



k n-k 1
r(2) k f l r-(n-2) (r2_x)-2  r nl dr

n k n-kn r(.12) -11- 1 2 2
x - (r -x)-

21 2-

k n+2-k x (l-x) 2 0 < x < Ir ( ) r (
It is the density of B k 9n+2-k Similarly, Gm(ait,...,(Il;am; ) is

equal to D (al,...a 1 .l1 .l, where 2(a + ..-. +a) n.

By the theorems in Section 4 we obtain the following conclusions: If A
k n+2-k.is an n x n symmetric matrix, then x'Ax B if and only if

A2 A and rk(A) k. If Ai, i - l...,m-l, are n x n symmetric

matrices, then
OLI -1 n "1 .. m

(-'AlX""' -m,-l-) M (-t " "-- 2

if and only if 2 A i l,...,m-l and A A - 0 for i J.

-i ~ ka.

Clearly, we can extend the above conclusions to the uniform distribution

in ellipsoid.
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